结邦化是一种非扰动过程,无法从第一原理推导出理论描述。建模强子地层,需要几种假设和各种现象学方法。利用最先进的计算机视觉和深度学习算法,最终可以训练神经网络以学习物理过程的非线性和非扰动特征。在本研究中,通过调查全局和运动量,确实喷射和事件形状变量来呈现两个Reset网络的结果。广泛使用的焊串碎片模型应用于$ \ sqrt {s} = 7 $ tev proton-proton碰撞中的基线,以预测进一步的LHC能量的最相关的可观察者。
translated by 谷歌翻译
自从Russo和Zou(2016,2019)和Xu and Raginsky(2017)的著名作品以来,众所周知,监督学习算法的概括性错误可以根据其输入和输出,输出和输出之间的相互信息来界定。鉴于任何固定假设的丧失都具有亚高斯的尾巴。在这项工作中,我们将此结果推广到Shannon的共同信息的标准选择之外,以衡量输入和输出之间的依赖性。 Our main result shows that it is indeed possible to replace the mutual information by any strongly convex function of the joint input-output distribution, with the subgaussianity condition on the losses replaced by a bound on an appropriately chosen norm capturing the geometry of the dependence measure 。这使我们能够得出一系列的概括范围,这些范围是全新的,或者增强了以前已知的范围。示例包括按$ p $ norm差异和Wasserstein-2距离表示的界限,这些距离分别适用于重尾损失分布和高度平滑的损失功能。我们的分析完全基于来自凸分析的基本工具,通过跟踪与依赖度量和损失函数相关的潜在功能的增长。
translated by 谷歌翻译
Cell-free multi-user multiple input multiple output networks are a promising alternative to classical cellular architectures, since they have the potential to provide uniform service quality and high resource utilisation over the entire coverage area of the network. To realise this potential, previous works have developed radio resource management mechanisms using various optimisation engines. In this work, we consider the problem of overall ergodic spectral efficiency maximisation in the context of uplink-downlink data power control in cell-free networks. To solve this problem in large networks, and to address convergence-time limitations, we apply scalable multi-objective Bayesian optimisation. Furthermore, we discuss how an intersection of multi-fidelity emulation and Bayesian optimisation can improve radio resource management in cell-free networks.
translated by 谷歌翻译
Vehicle trajectory data has received increasing research attention over the past decades. With the technological sensing improvements such as high-resolution video cameras, in-vehicle radars and lidars, abundant individual and contextual traffic data is now available. However, though the data quantity is massive, it is by itself of limited utility for traffic research because of noise and systematic sensing errors, thus necessitates proper processing to ensure data quality. We draw particular attention to extracting high-resolution vehicle trajectory data from video cameras as traffic monitoring cameras are becoming increasingly ubiquitous. We explore methods for automatic trajectory data reconciliation, given "raw" vehicle detection and tracking information from automatic video processing algorithms. We propose a pipeline including a) an online data association algorithm to match fragments that are associated to the same object (vehicle), which is formulated as a min-cost network flow problem of a graph, and b) a trajectory reconciliation method formulated as a quadratic program to enhance raw detection data. The pipeline leverages vehicle dynamics and physical constraints to associate tracked objects when they become fragmented, remove measurement noise on trajectories and impute missing data due to fragmentations. The accuracy is benchmarked on a sample of manually-labeled data, which shows that the reconciled trajectories improve the accuracy on all the tested input data for a wide range of measures. An online version of the reconciliation pipeline is implemented and will be applied in a continuous video processing system running on a camera network covering a 4-mile stretch of Interstate-24 near Nashville, Tennessee.
translated by 谷歌翻译
To apply federated learning to drug discovery we developed a novel platform in the context of European Innovative Medicines Initiative (IMI) project MELLODDY (grant n{\deg}831472), which was comprised of 10 pharmaceutical companies, academic research labs, large industrial companies and startups. The MELLODDY platform was the first industry-scale platform to enable the creation of a global federated model for drug discovery without sharing the confidential data sets of the individual partners. The federated model was trained on the platform by aggregating the gradients of all contributing partners in a cryptographic, secure way following each training iteration. The platform was deployed on an Amazon Web Services (AWS) multi-account architecture running Kubernetes clusters in private subnets. Organisationally, the roles of the different partners were codified as different rights and permissions on the platform and administrated in a decentralized way. The MELLODDY platform generated new scientific discoveries which are described in a companion paper.
translated by 谷歌翻译
Data-driven interatomic potentials have emerged as a powerful class of surrogate models for {\it ab initio} potential energy surfaces that are able to reliably predict macroscopic properties with experimental accuracy. In generating accurate and transferable potentials the most time-consuming and arguably most important task is generating the training set, which still requires significant expert user input. To accelerate this process, this work presents \text{\it hyperactive learning} (HAL), a framework for formulating an accelerated sampling algorithm specifically for the task of training database generation. The key idea is to start from a physically motivated sampler (e.g., molecular dynamics) and add a biasing term that drives the system towards high uncertainty and thus to unseen training configurations. Building on this framework, general protocols for building training databases for alloys and polymers leveraging the HAL framework will be presented. For alloys, ACE potentials for AlSi10 are created by fitting to a minimal HAL-generated database containing 88 configurations (32 atoms each) with fast evaluation times of <100 microsecond/atom/cpu-core. These potentials are demonstrated to predict the melting temperature with excellent accuracy. For polymers, a HAL database is built using ACE, able to determine the density of a long polyethylene glycol (PEG) polymer formed of 200 monomer units with experimental accuracy by only fitting to small isolated PEG polymers with sizes ranging from 2 to 32.
translated by 谷歌翻译
Density based representations of atomic environments that are invariant under Euclidean symmetries have become a widely used tool in the machine learning of interatomic potentials, broader data-driven atomistic modelling and the visualisation and analysis of materials datasets.The standard mechanism used to incorporate chemical element information is to create separate densities for each element and form tensor products between them. This leads to a steep scaling in the size of the representation as the number of elements increases. Graph neural networks, which do not explicitly use density representations, escape this scaling by mapping the chemical element information into a fixed dimensional space in a learnable way. We recast this approach as tensor factorisation by exploiting the tensor structure of standard neighbour density based descriptors. In doing so, we form compact tensor-reduced representations whose size does not depend on the number of chemical elements, but remain systematically convergeable and are therefore applicable to a wide range of data analysis and regression tasks.
translated by 谷歌翻译
Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.
translated by 谷歌翻译
通过从其计算中排除了许多随机优化的领先迭代,尾巴平均对Polyak平均的非反应行为进行了改善。实际上,具有有限数量的优化步骤和无法将其退火至零的学习率,尾巴平均可以比单个迭代或polyak平均值更接近训练损失的局部最小点。但是,引导迭代的忽略数量是重要的超参数,并且开始平均太早或太晚导致资源或次优溶液的使用效率低下。将此超参数设置为改善概括更加困难,尤其是在其他超参数和过度拟合的情况下。此外,在平均开始之前,损失只是对最终表现的淡淡信息,这使得早期停止不可靠。为了减轻这些问题,我们提出了任何时间平均变体,该变体没有超参数,并且在所有优化步骤中都近似最佳的尾巴。我们的算法基于两个运行平均值,其自适应长度以最佳的尾巴长度为界,其中一种具有一些规律性的近似最佳性。仅需要两组重量的额外存储空间和对损失的定期评估,提出的两尾平均算法是一种实用且广泛适用的方法,可用于改善随机优化。
translated by 谷歌翻译
这项工作开发了具有严格效率的新算法,可确保无限的地平线模仿学习(IL)具有线性函数近似而无需限制性相干假设。我们从问题的最小值开始,然后概述如何从优化中利用经典工具,尤其是近端点方法(PPM)和双平滑性,分别用于在线和离线IL。多亏了PPM,我们避免了在以前的文献中出现在线IL的嵌套政策评估和成本更新。特别是,我们通过优化单个凸的优化和在成本和Q函数上的平稳目标来消除常规交替更新。当不确定地解决时,我们将优化错误与恢复策略的次级优势联系起来。作为额外的奖励,通过将PPM重新解释为双重平滑以专家政策为中心,我们还获得了一个离线IL IL算法,该算法在所需的专家轨迹方面享有理论保证。最后,我们实现了线性和神经网络功能近似的令人信服的经验性能。
translated by 谷歌翻译